Use of ROSA data in Space Weather

Massimo Materassi (ISC-CNR Firenze)

Chicago, August 7-16, 2008
Flying on board of Oceansat-2…

Contract: ASI-ISMB, ISMB/ASI N.I./006/07/0

ASI Agenzia Spaziale Italiana (Italian Space Agency)

ISMB Istituto Superiore “Mario Boella”

Chicago, August 7-16, 2008
PLAN OF THE TALK

• The Oceansat-2 Mission.
• The ROSA receiver’s concept.
• The ROSA-ROSSA scientific campaigns.
• Space Weather of the ionospheric vertical profiles.
• Space Weather of the topside-plasmaspheric TEC.
• Space Weather of the radio scintillation on limb-sounding links.
• Conclusions.
PLAN OF THE TALK

• The Oceansat-2 Mission.
Oceansat-2: an Indian satellite dedicated for ocean research

- **Ku-band pencil beam scatterometer:** wind vectors close to Ocean’s surface
- **Ocean Colour Monitor (CCD camera):** LAC (360 m) and GAC (4 km) modes to image Ocean’s surface globally (in 4 ÷ 6 days) and in local detail
- **Radio Occultation Sounder of the Atmosphere (ROSA):** atmospheric profiles and data for space weather

Credits: from the announcement of opportunity “Indian Remote Sensing Satellite Oceansat-2 Mission” issued by ISRO

Chicago, August 7-16, 2008
PLAN OF THE TALK

• The Oceansat-2 Mission.

• The ROSA receiver’s concept.
tracking the signal in rising events: the ROSA open loop and closed loop configurations

$h > h_{\text{threshold}}$: the signal is regular enough to be tracked via the closed loop configuration of ROSA

Open loop: CIRA_Q tropospheric (and stratospheric) model, here in use up to $h_{\text{threshold}} \simeq 6 \div 9$ km

$h < h_{\text{threshold}}$: the signal, strongly disturbed by water vapour, is tracked via an open loop configuration of ROSA
The ground segment of ROSA 1/2

Data will be downloaded to the Space Geodesy Centre in Matera (Italy) and to the National Remote Sensing Agency in Hyderabad (India).

On the average, Oceansat-2 will be in view 6 times per day.

Table 1 – Details related to one-cycle OCEANSAT-2 ground visibility (2 days) from the two acquisition centres of Matera and Hyderabad

<table>
<thead>
<tr>
<th>Start visibility</th>
<th>End visibility</th>
<th>Duration, s</th>
<th>GS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Jun 2006 12:03:47.97</td>
<td>1 Jun 2006 12:17:03.15</td>
<td>795.176</td>
<td>Matera</td>
</tr>
<tr>
<td>1 Jun 2006 18:07:06.70</td>
<td>1 Jun 2006 18:20:57.02</td>
<td>830.321</td>
<td>Hyderabad</td>
</tr>
<tr>
<td>1 Jun 2006 20:01:04.11</td>
<td>1 Jun 2006 20:06:46.06</td>
<td>341.950</td>
<td>Matera</td>
</tr>
<tr>
<td>1 Jun 2006 21:33:52.52</td>
<td>1 Jun 2006 21:47:29.03</td>
<td>816.508</td>
<td>Matera</td>
</tr>
<tr>
<td>1 Jun 2006 23:12:17.80</td>
<td>1 Jun 2006 23:25:27.82</td>
<td>790.017</td>
<td>Matera</td>
</tr>
<tr>
<td>2 Jun 2006 06:24:44.03</td>
<td>2 Jun 2006 06:38:42.48</td>
<td>838.453</td>
<td>Hyderabad</td>
</tr>
<tr>
<td>2 Jun 2006 08:04:17.37</td>
<td>2 Jun 2006 08:14:36.08</td>
<td>618.711</td>
<td>Hyderabad</td>
</tr>
<tr>
<td>2 Jun 2006 09:37:30.71</td>
<td>2 Jun 2006 09:48:07.01</td>
<td>636.300</td>
<td>Matera</td>
</tr>
</tbody>
</table>

Chicago, August 7-16, 2008
The software of the ground segment is built up by Italian universities, research-technological institutes and an innovative industry. They will be all part of a web grid for data elaboration.
The data products from ROSA

- **Level 1a data**
 - ROSA Navigation Data
 - IGS data or ASI Ground Fiducial Network data
- **Level 1b data**
 - GPS/OCEANSAT-2 ORBITAL DETERMINATION & PREDICTION
- **Level 2 data**
 - EXCESS PHASES AND OCCULTATION TABLES
- **Level 3a data**
 - BENDING VS IMPACT PARAMETERS on L₁ and L₂
- **Level 3b data**
 - BENDING VS IMPACT PARAMETERS IONO FREE
- **Level 3c data**
 - STRATOSPHERIC OPTIMIZATION OF BENDING AND IMPACT PARAMETERS
 - Atmospheric models
- **Level 3d data**
 - REFRACIVITY, TEMPERATURE AND PRESSURE PROFILES (DRY AIR)
 - Atmospheric models
- **Level 3e data**
 - WATER VAPOUR PROFILES

- **Level 3f data**
 - ELECTRON DENSITY PROFILES through ONION PEELING
PLAN OF THE TALK

- The Oceansat-2 Mission.
- The ROSA receiver’s concept.
- The ROSA-ROSSA scientific campaigns.
Tropopause height and temperature, climatic studies, large scale water vapour analysis, RO vs LIDAR

Assimilation of RO data into climatological and real time weather prediction models

Assimilation of RO data into climatological and real time weather prediction models

Ionospheric 3D inversion via tomography

Chicago, August 7-16, 2008
Chicago, August 7

ROSAROSSA: ROSA Research and Operational Satellite and Software Activities

Space weather via:
- Ionospheric profile analysis;
- Topside-plasmasphere’s TEC monitoring;
- Irregularity study via occultation links
PLAN OF THE TALK

• The Oceansat-2 Mission.

• The ROSA receiver’s concept.

• The ROSA-ROSSA scientific campaigns.

• Space Weather of the ionospheric vertical profiles.
Ionospheric profiles from RO via MIDAS

(Multi Instrument Data Analysis System, developed by the University of Bath, UK)

Profile on the top of some location $P = (\vartheta_P, \varphi_P)$:

$$N_e (P; h) = N_{e\text{MIDAS}} (\vartheta_P, \varphi_P, h)$$

- GPS-ground links: horizontal gradients;
- Radio occultation links: vertical gradients;
- GPS-LEO positioning links: topside and plasmasphere.

Chicago, August 7-16, 2008
Tomography-onion peeling mutual “validation”:

Profiles for 19-Sep-2001 10:29:59 UT (45.8N 4.0W, CHAMP)

Profiles for 19-Sep-2001 10:29:59 UT (45.8N 4.0W, MIDAS)

Chicago, August 7-16, 2008
Tomography and onion peeling validation via data (e.g. ionosondes):
• Collect ionospheric profiles $N_e(h)$ for different helio-geophysical conditions;

• Qualitative-freqency study: parametrize the profiles (e.g. N_{max}, h_{max}, H_i,...) and study the variability of parameters’ distribution as a consequence of the different helio-geophysical conditions;

• Quantitative study: study the coupling between processes describing the Sun-Earth forcing and the profile parameter evolution via tools from information theory (e.g. mutual information and information transfer).
PLAN OF THE TALK

• The Oceansat-2 Mission.
• The ROSA receiver’s concept.
• The ROSA-ROSSA scientific campaigns.
• Space Weather of the ionospheric vertical profiles.
• Space Weather of the topside-plasmaspheric TEC.
Topside-plasmasphere TEC may be obtained from “navigational data” of the LEO-spaceborn receiver, and put in relationship with helio-geophysical conditions.
Space Weather of the small scale structures of the total electron content.

2003 Halloween Storm

What happens to the TEC (multiscale structure) during the storm?

October 29, UT 00:00

After the website of NOAA, SPIDR

Chicago, August 7-16, 2008
During the storm period, the (ground) vertical TEC appears not only fluctuating with a stronger dynamic, but also more irregular at the small time scales.

The continuous wavelet analysis, is able to track the distribution of fluctuations at all the scales as functions of the time in a very detailed way.

Chicago, August 7-16, 2008
PLAN OF THE TALK

- The Oceansat-2 Mission: a Indian-Italian opportunity.
- The ROSA receiver’s concept.
- The ROSA-ROSSA scientific campaigns.
- Space Weather of the ionospheric vertical profiles.
- Space Weather of the topside-plasmaspheric TEC.
- Space Weather of the radio scintillation on limb-sounding links.
Radio scintillation is caused by an irregular refractivity. Studying the radio-scintillation on a given link is studying the (integrated) effect of these irregularities.

If the sampling is high enough (e.g. 50 Hz), LEO + GPS data will allow for the comparison between the ionospheric and tropospheric irregularity effects in terms of radio scintillation.

High sampling rate data from ground GPS scintillation receivers are the “playground” for practicing on multi-scale analysis of radio scintillation.
Radio scintillations are multi-scale and non-stationary. Wavelet analysis will be the right tool to study them.

Multi scale analysis applied to radio data allows both to appreciate small scale features in the medium and to discriminate unwanted interference effects.
PLAN OF THE TALK

• The Oceansat-2 Mission: a Indian-Italian opportunity.
• The ROSA receiver’s concept.
• The ROSA-ROSSA scientific campaigns.
• Space Weather of the ionospheric vertical profiles.
• Space Weather of the topside-plasmaspheric TEC.
• Space Weather of the radio scintillation on limb-sounding links.
• Conclusions.
Opportunities given by the availability of data from the ROSA receiver in terms of Space Weather of the ionosphere (1/2):

- Assess quantitatively the role of radio-occultation in stochastic inversions of ionospheric data.

- Develop and refine non-tomographic profile retrieval techniques (advanced onion-peeling techniques).

- Monitor the variability of the ionospheric structure in the vertical direction in relationship with different Space Weather conditions.
Opportunities given by the availability of data from the ROSA receiver in terms of Space Weather of the ionosphere (2/2):

• Monitor the topside-plasmaspheric TEC in relationship with different Space Weather conditions.

• Study the RO data via multi-scale analysis, to investigate the radial properties of ionospheric irregularities.

• Study the topside-plasmasphere data via multi-scale analysis, to investigate the topside-plasmaspheric irregularities (if any).
Opportunities given by the availability of data from the ROSA receiver in terms of Space Weather – Weather interaction:

• The ROSA receiver will provide the community with data for both the ionospheric and the “lower” atmospheric science.

• The ROSA project has brought together physicists and engineers from the two fields.

• The ROSA-ROSSA community is a good chance for exchanging experiences, ideas and working to the investigation of how the “lower” atmosphere system is forced by the Sun-Earth interaction and responds to it (non-antropogenic global change).

• Open our community to the worldwide community.

Chicago, August 7-16, 2008
Acknowledgements

• The Chairpersons of this Session for kindly inviting me to present this work.

• ASI for the support after the contract “Software for Oceansat2-ROSA”

• Dr Cathryn N. Mitchell (the Chairlady again!) for providing ground scintillation data and MIDAS.

• Dr Luigi Ciraolo for providing time series of vertical TEC data, and very useful discussions.

• Dr Paolo Spalla for the pleasure to work everyday with him.

• The Organizers of the present General Assembly and all the very kind people of the Staff.

Chicago, August 7-16, 2008
Thank you all for your kind attention...

W.W.